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A B S T R A C T

For the past several years, the compartment bag test (CBT) has been employed in water quality monitoring
and public health protection around the world. To date, however, the statistical basis for the design and rec-
ommended procedures for enumerating fecal indicator bacteria (FIB) concentrations from CBT results have
not been formally documented. Here, we provide that documentation following protocols for communicat-
ing the evolution of similar water quality testing procedures. We begin with an overview of the statistical
theory behind the CBT, followed by a description of how that theory was applied to determine an optimal
CBT design. We then provide recommendations for interpreting CBT results, including procedures for esti-
mating quantiles of the FIB concentration probability distribution, and the confidence of compliance with
recognized water quality guidelines. We synthesize these values in custom user-oriented ‘look-up’ tables
similar to those developed for other FIB water quality testing methods. Modified versions of our tables are
currently distributed commercially as part of the CBT testing kit.

Published by Elsevier B.V.

1. Introduction

Ensuring readily-available high quality drinking water is
fundamental to human health and has important connections to

* Corresponding author at: NOAA, Great Lakes Environmental Research Laboratory,
Ann Arbor, MI, USA.

E-mail address: drew.gronewold@noaa.gov (A.D. Gronewold).

socioeconomic status, commercial and industrial growth, and overall
quality of life (Mekonnen and Hoekstra, 2016). The challenge of
providing that ensurance is met in different ways around the world; in
some communities, drinking water supplies are assumed protected if
they are adequately separated from wastewater and other sources of
contamination (George, 2008). In others, routine water quality test-
ing is used to ensure compliance with recognized standards (Gleick,
1998; Novotny, 2003). Testing kits that support these assessments
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often require a skilled technician to collect, analyze, and interpret
results, as well as microbiological laboratory facilities. In regions of
the world without these resources and where the time from water
withdrawal (from its source) to consumption is short, alternative
testing procedures are needed.

To address this gap in global water quality protection, researchers
at the University of North Carolina Chapel Hill and Duke University
developed a simple kit for enumerating FIB concentrations that
is portable, relatively inexpensive, and provides easy-to-interpret
results (Stauber et al., 2014). This kit, commonly referred to as
the compartment bag test (or CBT), is currently manufactured and
distributed by Aquagenx, LLC and has been tested and used in
communities around the world (Murcott et al., 2015; Weiss et al.,
2016). To date, however, the statistical basis for the design and
recommended interpretation of results from the CBT have not been
formally documented.

Here, following documentation for the development of similar
water quality testing kits (McCrady, 1915; de Man, 1977; Tillett and
Coleman, 1985; Haas, 1989; McBride et al., 2003), we begin with
an overview of the statistical theory behind the CBT, followed by
examples of how that theory was applied to determine an optimal
CBT design. We then provide recommendations for interpreting
CBT results, including procedures for estimating quantiles of the
FIB concentration probability distribution, as well as procedures for
calculating the confidence of compliance with World Health Organi-
zation (WHO) drinking water quality guidelines (McBride and Ellis,
2001; Borsuk et al., 2002; World Health Organization, 2004). We
synthesize these values in custom user-oriented ‘look-up’ tables sim-
ilar to those developed for other FIB testing kits (de Man, 1977).
Finally, we explore the sensitivity of CBT results to departures
from assumptions in the underlying statistical models, and from
recommended protocols for sample collection and handling.

2. Experimental

2.1. Statistical basis for interpreting CBT results

The CBT is a manufactured clear plastic multi-compartment bag
into which 100 ml of a water sample is distributed (Stauber et
al., 2014). Each compartment contains a growth substrate designed
to detect groups of FIB (such as hydrogen sulphide producers), or
specific bacteria such as Escherichia coli (EC), by turning a distinctive
color (e.g. blue-green) indicating growth of “target” (e.g. FIB or EC)
bacteria during an incubation period. The CBT will yield a pattern
of ‘positive’ and ‘negative’ compartments from which a user can
infer the FIB concentration of the original sample following the
common assumption (Greenwood and Yule, 1917; Cochran, 1950;
Woodward, 1957; El-Shaarawi et al., 1981; Hurley and Roscoe, 1983;
de Man, 1983; Haas and Heller, 1988; Woomer et al., 1990; Briones
and Reichardt, 1999) that, for a given sample, the number of target
bacteria (yi) in compartment i (i ∈ [1, m] and m is the total number
of compartments) with volume vi (assuming a well-mixed sample) is
well-represented by a Poisson probability distribution yi ∼ Po(ki =
cvi/100) with FIB concentration c (in organisms per 100 ml), and
mean and variance ki. The probability of a positive compartment of
volume vi is 1−exp(−cvi/100). The joint probability of any pattern of
positive and negative compartments �x (where the over-arrow super-
script denotes a row vector, xi ∈ [0, 1] and x = 1 indicates a positive
compartment) is then expressed as the product of a series of m
independent Bernoulli trials:

f (�x | �v, c) ∝
m∏

i=1

(
1 − e−cvi/100

)xi
(

e−cvi/100
)1−xi

(1)

Conventional interpretations of presence/absence test kits for FIB
often focus on a deterministic solution to c from Eq. (1). This value
is commonly referred to as the “most probable number” (or MPN)
and can be calculated as (Hurley and Roscoe, 1983; McBride, 2005;
Gronewold and Wolpert, 2008)

MPN = argmax
c

[
m∏

i=1

(
1 − e−cvi/100

)xi
(

e−cvi/100
)1−xi

]
(2)

We implement this formulation using the uniroot function in
the R statistical software package (R Core Team, 2014). Correspond-
ing code is included in the Supplementary Information.

Multiple methods have been developed for expressing uncer-
tainty in the MPN, however most do not explicitly acknowledge
that the probability distribution of the MPN for a given pattern of
positive and negative compartments is typically discrete and multi-
modal, while the probability distribution of the FIB concentration
is almost always unimodal and continuous (Klee, 1993; Gronewold
and Wolpert, 2008). Therefore, in addition to reporting conventional
MPN values, we propose two interpretations of CBT results that
allow for a more robust understanding of the uncertainty in the FIB
concentration and how that uncertainty affects the confidence of
compliance with water quality guidelines (McBride and Ellis, 2001;
Gronewold and Borsuk, 2009, 2010). The first is based on calculating
quantiles of the likelihood function of the FIB concentration (Eq. (1),
written as a function of c for given �x and �v), as well as the probability
that the FIB concentration exceeds 1, 10, 100, or 1000 organisms per
100 ml.

The second interpretation is based on a Bayesian analysis of CBT
results (Bernardo and Ramon, 1998; Press, 2003; Bolstad, 2004)
where the posterior probability distribution of the FIB concentration
c is proportional to the product of the likelihood function (Eq. (1))
and prior probability distribution p(c):

f (c | �x, �v) ∝ p (c)f (�x | �v, c) (3)

One advantage of this approach is that it allows for expression
of a priori assumptions about the potential range of the FIB concen-
tration in a water sample. Methods based on the likelihood function
alone, in contrast, implicitly assume a priori that FIB concentrations
ranging from 0 to ∞ are equally likely; an assumption analogous to
a belief that gross contamination is just as likely as a FIB concentra-
tion within a few orders of magnitude of (or even well below) WHO
water quality guidelines. This a priori belief is just one of many a CBT
user might have about water quality at a particular sampling location
(Press, 2003). Here, we present calculations based on a lognormal
prior p(c) = LN(l = 0,s2 = 100), with log-concentration mean l

and variance s2, intended to represent an a priori belief that the FIB
concentration is most likely low, but that extreme FIB concentrations
are possible. We view further investigation of impacts of alternative
priors on CBT results as an important area for future research.

It is informative to note that previous studies have explored alter-
native probability models for interpreting multiple-compartment
water quality analysis results, including the negative binomial model
and variations of the Poisson model that account for thinning and dis-
persion (Christian and Pipes, 1983; El-Shaarawi et al., 1981; Messner
and Wolpert, 2002; Crainiceanu et al., 2003). Recent research, how-
ever (see Gronewold et al., 2008; Wu et al., 2014), indicates that only
extreme and persistent violations of the Poisson probability model
would justify application of an alternative probability model.

Finally, following Eq. (1), we calculate the relative likelihood of
each possible combination of positive and negative compartments.
Results of this calculation provide an indication of CBT outcomes
that are most likely, and those that (because they are extremely
unlikely) might indicate contamination or thinning of individual
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Fig. 1. Likelihood functions (first five rows) for individual positive (‘1’ in upper-right corner of panel) or negative (‘0’ in upper-right corner) compartments of the 5-compartment
CBT, and normalized likelihood functions (bottom row) for the eight most likely outcomes of the CBT. Likelihood functions in the bottom row reflect the combined results of the
positive and negative compartments from the five panels above (from the same column). The bottom left-most panel, for example, is the normalized likelihood function for the
FIB concentration from a CBT result with all compartments negative. Vertical grey lines in the panels of the bottom row indicate the MPN (note that the MPN is undefined when
all compartments are positive).

compartments and would therefore warrant additional testing and
verification.

2.2. Design criteria

The number and volume of compartments of the CBT is based
on consideration of a range of criteria including ease of manufac-
turing, minimization of potential user error (such as unintentionally
distributing more or less water into each CBT compartment than
intended), and results that are readily translatable into health risk-
based metrics. More specifically, the ideal CBT design yields a pattern
of positive and negative compartments that are easy to translate
into FIB concentrations with uncertainty bounds relevant to human
health risks. For most applications of the CBT, we expect these risks
will be assessed using FIB concentration numeric limits prescribed

in WHO water quality guidelines. We assess compliance with this
criteria by inferring FIB concentrations associated with each possible
result (i.e. each combination of positive and negative compartments)
of a particular CBT design, and then comparing these concentrations
to established water quality criteria and standards.

To demonstrate our approach, we provide a comparison between
two CBT designs. The first (the design ultimately employed in
practice) is a CBT with five compartments with volumes (in ml) �v =
{56, 30, 10, 3, 1}. The second is a CBT with seven compartments with
volumes �v = {37, 32, 16, 8, 4, 2, 1}. These design options evolved out
of a qualitative consideration of the aforementioned criteria, as well
as the constraints that the cumulative volume of all compartments
equal 100 ml, and that the compartment volumes span as broad
a range as possible without multiple compartments of the same
volume.

Table 1
Likelihood function-based interpretation of the eight highest likelihood combinations of positive (1) and negative (0) compartments for the recommended 5-compartment CBT
design. Results include the MPN, quantiles of the FIB concentration normalized likelihood function, and the likelihood-based probability that c exceeds numeric water quality
guidelines of 1, 10, 100, and 1000 (organisms per 100 ml). Note that when all compartments are positive, the FIB concentration likelihood function is continuously increasing and
therefore the MPN and FIB concentration quantiles are undefined (Gronewold et al., 2010).

Highest likelihood combinations of positive (1) and negative (0) compartments MPN q2.5 q5.0 q25.0 q75.0 q95.0 q97.5 Likelihood that c >

56 ml 30 ml 10 ml 3 ml 1 ml 1 10 100 1000

0 0 0 0 0 0.0 <0.1 <0.1 0.3 1.4 3.0 3.7 0.33 0.00 0.00 0.00
1 0 0 0 0 1.5 0.4 0.5 1.5 4.4 8.1 9.7 0.85 0.02 0.00 0.00
1 1 0 0 0 4.7 1.5 2.1 4.8 13.2 24.8 29.7 0.99 0.39 0.00 0.00
1 1 1 0 0 13.6 4.8 6.4 15.1 44.1 84.4 101.8 1.00 0.87 0.03 0.00
1 1 0 1 0 9.6 3.3 4.3 9.2 23.0 39.7 46.5 1.00 0.71 0.00 0.00
1 1 1 1 0 48.3 16.4 22.4 55.5 170.0 331.0 400.5 1.00 0.99 0.50 0.00
1 1 1 0 1 32.6 10.9 14.3 31.6 81.4 141.8 166.5 1.00 0.98 0.16 0.00
1 1 1 1 1 NA NA NA NA NA NA NA NA NA NA NA

Please cite this article as: A. Gronewold et al., The compartment bag test (CBT) for enumerating fecal indicator bacteria: Basis for design
and interpretation of results, Science of the Total Environment (2017), http://dx.doi.org/10.1016/j.scitotenv.2017.02.055
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Fig. 2. Bayesian interpretation of CBT results including FIB concentration prior probability distribution (red lines) and histograms of simulated samples from the FIB concentration
posterior probability distribution for the eight most likely results from the 5-compartment (volumes 56, 30, 10, 3, 1ml) CBT. Values of 1 and 0 across the top of each panel
correspond to each pattern of positive (1) and negative (0) compartments of volumes 56, 30, 10, 3, and 1ml, respectively. The x-axis of the two right-most panels in the bottom
row is plotted on a logarithmic scale for clarity.

For each of the two test designs, we first calculated the full
FIB concentration likelihood function for each possible CBT result,
and then implemented our Bayesian interpretation by simulating
samples from the posterior probability distribution of the FIB con-
centration (Eq. (3)) for each possible CBT result using Markov chain
Monte Carlo (MCMC) procedures in the software program WinBUGS
(Lunn et al., 2000). We ran each MCMC chain until it reached con-
vergence, indicated by a potential scale reduction factor R̂ (Gelman
et al., 2004) close to 1.0. WinBUGS code used to simulate the pos-
terior probability distribution for c for the �v = {56, 30, 10, 3, 1} CBT
design is included in the Supplementary Information. From the like-
lihood functions and posterior probability distributions, we calculate
a series of quantiles, as well as the likelihood (or posterior probabil-
ity) that the FIB concentration exceeds 1, 10, 100, or 1000 organisms
per 100 ml.

2.3. Sensitivity analysis

To better understand the sensitivity of CBT results to potential
variations in user handling (including violations of the assumptions

in our statistical models), we repeat the simulation described in
the previous section for the 5-compartment CBT using hypotheti-
cal compartment volumes (in ml) of �v = {58.4, 30.5, 14.5, 2.5, 0.7}
and �v = {32.3, 33.5, 23.3, 4.9, 3.4}. These volume sequences were
obtained from an informal (unpublished) study by one of the
authors at the University of North Carolina - Chapel Hill in which
roughly twenty individuals with a range of CBT experience used
the CBT, and the actual water sample volumes they distributed
into each compartment were recorded. The two selected sequences
represent, respectively, moderate and severe departures from the
intended 5-compartment CBT design with compartment volumes
�v = {56, 30, 10, 3, 1}.

3. Results and discussion

Of the 32 potential combinations of positive and negative
compartments for the 5-compartment CBT, we find that there are
appreciable differences in the relative likelihood of each outcome
(see Table S1 in the Supplementary Information). Some results
(particularly those for which the 56 ml compartment is positive) are

Table 2
Bayesian interpretation of the eight highest likelihood combinations of positive (1) and negative (0) compartments for the recommended 5-compartment CBT design. Results
include the MPN, quantiles of the FIB concentration posterior probability distribution, and the posterior probability that c exceeds numeric water quality guidelines of 1, 10, 100,
and 1000 (organisms per 100 ml). Note that with a Bayesian interpretation, quantiles of the FIB concentration posterior probability distribution are defined when all compartments
are positive, however the MPN is not defined (when all compartments are positive) because it is based on the likelihood function alone (Gronewold et al., 2010). A Bayesian
interpretation of all possible combinations of positive and negative compartments is included in the Supplementary Information.

Highest likelihood combinations of positive (1) and negative (0) compartments MPN q2.5 q5.0 q25.0 q75.0 q95.0 q97.5 Post. prob. that c >

56 ml 30 ml 10 ml 3 ml 1 ml 1 10 100 1000

0 0 0 0 0 0 <0.1 <0.1 <0.1 <0.1 0.5 0.8 0.02 0.00 0.00 0.00
1 0 0 0 0 1.5 <0.1 0.1 0.4 2.2 4.9 6.2 0.51 0.00 0.00 0.00
1 1 0 0 0 4.7 0.6 0.9 2.5 8.3 18.1 22.0 0.94 0.18 0.00 0.00
1 1 1 0 0 13.6 2.8 3.8 11.1 49.7 142.5 189.3 1.00 0.78 0.10 0.00
1 1 0 1 0 9.6 0.6 0.8 2.5 8.3 18.9 23.6 0.94 0.19 0.00 0.00
1 1 1 1 0 48.3 2.8 3.9 11.0 50.8 143.6 191.2 1.00 0.78 0.10 0.00
1 1 1 0 1 32.6 37.4 70.7 734.7 8.5 × 105 1.2 × 109 1.9 × 1010 1.00 1.00 0.92 0.70
1 1 1 1 1 NA 36.9 67.2 702.9 8.5 × 105 1.4 × 109 2.0 × 1010 1.00 1.00 0.93 0.73

Please cite this article as: A. Gronewold et al., The compartment bag test (CBT) for enumerating fecal indicator bacteria: Basis for design
and interpretation of results, Science of the Total Environment (2017), http://dx.doi.org/10.1016/j.scitotenv.2017.02.055

http://dx.doi.org/10.1016/j.scitotenv.2017.02.055


A. Gronewold et al. / Science of the Total Environment xxx (2017) xxx–xxx 5

ARTICLE IN PRESS

Table 3
Comparison between results when there is minimal (or no) user error (*) and results with there is either moderate (**) or severe (***) user error. MPN values and 95th percentiles
of the FIB concentration (c95) are in organisms per 100 ml. The final column indicates the posterior probability that the FIB concentration c exceeds the WHO numeric water
quality standard of 100 organisms per 100 ml. Note that with a Bayesian interpretation, quantiles of the FIB concentration posterior probability distribution are defined when all
compartments are positive, however the MPN is not defined (when all compartments are positive) because it is based on the likelihood function alone (Gronewold et al., 2010).

Highest likelihood combinations of pos. (1) and neg. (0) compartments MPN c95 P (c > 100)

56 ml 30 ml 10 ml 3 ml 1ml * ** *** * ** *** * ** ***

0 0 0 0 0 0.0 0.0 0.0 0.5 0.5 0.4 0.0 0.0 0.0
1 0 0 0 0 1.5 1.4 1.2 4.9 4.6 4.1 0.0 0.0 0.0
1 1 0 0 0 4.7 4.1 3.4 18.1 14.0 10.2 0.0 0.0 0.0
1 1 1 0 0 13.6 13.0 8.4 142.5 175.0 50.2 0.1 0.1 0.0
1 1 0 1 0 9.6 7.8 5.8 18.9 14.4 10.2 0.0 0.0 0.0
1 1 1 1 0 48.3 60.9 19.6 143.6 178.8 49.5 0.1 0.1 0.0
1 1 1 0 1 32.6 36.2 17.3 1.2 × 109 1.8 × 109 0.9 × 109 0.9 0.9 0.8
1 1 1 1 1 NA NA NA 1.4 × 109 1.8 × 109 1.0 × 109 0.9 0.9 0.8

quite likely while others are highly improbable. This is an impor-
tant distinction because highly unlikely CBT outcomes might indicate
one or more potential problems with sample handling and analysis
(including thinning or contamination of a particular compartment)
and warrant additional investigation. To underscore this point, and
to simplify our discussion of alternative CBT interpretations, we
hereafter focus on results from only the eight most likely outcomes
of the CBT.

FIB concentration likelihood functions reflecting information
content of individual CBT compartments (top five rows Fig. 1), and
of each combination of positive and negative compartments for the
eight most likely CBT results (bottom row Fig. 1), provide insight into
origins of uncertainty in CBT-based water quality assessments (see
also Table 1). For example, a CBT result with a pattern of positive
(1) and negative (0) compartments (with volumes 56, 30, 10, 3, and
1 ml) of �x = {1, 1, 0, 1, 0} has an MPN of 9.6 (organisms per 100 ml)
with moderate certainty in the FIB concentration. A CBT result for
which the pattern of positive and negative compartments is �x =
{1, 1, 1, 1, 0} has a higher MPN (48.3) and more uncertainty in the FIB
concentration because of the difference in the information content
of the 10 ml compartment. A positive 10 ml compartment (by itself)
indicates that the FIB concentration is almost certainly above roughly
40 organisms per 100 ml, while a negative 10 ml compartment indi-
cates that the concentration is almost certainly below 40 organisms
per 100 ml. The contrast between the information in these two
results underscores not only the relative value of keeping the CBT
simple (by minimizing the number of compartments, for example)
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Fig. 3. FIB concentration 95% likelihood intervals based on seven of the eight most
likely results of the 5-compartment CBT (intervals for a CBT result with all com-
partments positive are not shown because the likelihood function is continuously
increasing and the MPN is undefined). Thin black segments represent likelihood inter-
vals derived from the CBT. Thick grey segments represent likelihood intervals derived
from conventional membrane filtration (MF) analyses with CFU values that corre-
spond to MPN values from the CBT. The top-most pair of segments, for example,
includes FIB concentration 95% likelihood intervals from (thin black segment) a CBT
result with an MPN of 0, and (thick grey segment) an MF result with a CFU of 0.

and easy to implement, but also the potential sensitivity of CBT
outcomes to variations in sample handling.

A Bayesian interpretation of results from the 5-compartment CBT
with �v = {56, 30, 10, 3, 1} (Fig. 2 and Table 2) indicates how explicit
quantification of a priori beliefs about the FIB concentration in a
sample can propagate into different perceptions of human health risk
(Fig. 2) when compared to interpretations based on the likelihood
function alone, particularly for CBT outcomes with an intrinsically
broad likelihood function (e.g. a result of �x = {1, 1, 1, 1, 0}). In areas
where there is a long history of high quality drinking water, for
example, a prior probability distribution reflecting a strong belief in
a relatively low FIB concentration may be helpful in guiding water
use management decisions when there is insufficient information
content in the likelihood function alone.

We also find that the 5-compartment CBT design (Tables 1
and 2) provides a robust basis for distinguishing samples based
on compliance with WHO water quality guidelines, particularly
when compared to our alternative design with seven compart-
ments (see Table S2 in the Supplementary Information). For nearly
all of the most likely results of the 5-compartment CBT, we can
make a relatively confident statement about the range of the sam-
ple FIB concentration, and about compliance with each numeric
limit in the WHO guidelines. This statement may depend, as we
have shown, on whether a likelihood or Bayesian interpretation is
used. In either case, a probabilistic interpretation enhances infor-
mation from conventional MPN values alone; water quality experts
are often comfortable with MPN values, but not with quantifying
associated uncertainties when the MPN is derived from a novel and
unconventional testing kit such as the CBT.

Our assessment of the potential impacts of user error (Table 3
and Supplementary Information) suggests that the 5-compartment
CBT test is relatively robust to both moderate and severe errors.
More specifically, we find that moderate handling errors would not
have changed the perceived probability of violating the WHO water
quality guideline of 100 organisms per 100 ml (a value indicating
‘very high risk’ water). Furthermore, we find that severe errors, while
leading to a slightly lower perceived probability of violating the WHO
water quality guideline of 100 organisms per 100 ml, would also
have been very unlikely to lead to a different perception of risk than
what would have been inferred had there been no error.

Finally, we acknowledge that users of the CBT have inquired
about the uncertainty in CBT results relative to uncertainties in more
conventional water quality testing tools, including (for example)
membrane filtration (MF) tests (Dufour and Cabelli, 1975; Dufour
et al., 1981; El-Shaarawi et al., 1981). A comparison between the
95% likelihood intervals from our analysis of the CBT (Table 1) and
95% likelihood intervals from MF tests with colony-forming unit
(CFU) values matching MPN values from the CBT (Gronewold and
Wolpert, 2008) indicates that (Fig. 3), for very low (i.e. less than 5
organisms per 100 ml) FIB concentrations, the confidence intervals
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are quite similar and that the differences are more extreme for
FIB concentration close to and above 10 (organisms per 100 ml).
A Bayesian interpretation of CBT results (Table 2) could affect the
range of these intervals and might in fact be desirable should water
quality management officials (and other CBT users) find that the
likelihood-based intervals do not provide enough informative at
higher concentrations. We suggest investigation of impacts of alter-
native prior distributions on inferred FIB concentration uncertainty
and compliance with WHO water quality guidelines as a high priority
for future research.

Acknowledgments

The authors thank Craig Stow for comments on early versions of
this manuscript, as well as Song Qian and James Crooks for helpful
discussions on Bayesian inference. This is NOAA-GLERL contribution
number 1849.

Appendix A. Supplementary information

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.scitotenv.2017.02.055.

References

Bernardo, J.M., Ramon, J.M., 1998. An introduction to Bayesian reference analysis:
inference on the ratio of multinomial parameters. 47 (1), 101–135.

Bolstad, W.M., 2004. Introduction to Bayesian Statistics. Wiley-Interscience, Hoboken,
N.J.

Borsuk, M.E., Stow, C.A., Reckhow, K.H., 2002. Predicting the frequency of water quality
standard violations: a probabilistic approach for TMDL development. Environ. Sci.
Technol. 36 (10), 2109–2115.

Briones, A.M., Reichardt, W., 1999. Estimating microbial population counts by ‘most
probable number’ using Microsoft Excel. J. Microbiol. Methods 35 (2), 157–161.

Christian, R.R., Pipes, W.O., 1983. Frequency distributions of coliforms in water
distribution systems. Appl. Environ. Microbiol. 45 (2), 603–609.

Cochran, W.G., 1950. Estimation of bacterial densities by means of the ‘most probable
number’. Biometrics 6 (2), 105–116.

Crainiceanu, C.M., Stedinger, J.R., Ruppert, D., Behr, C.T., 2003. Modeling the U.S.
national distribution of waterborne pathogen concentrations with application to
Cryptosporidium parvum. Water Resour. Res. 39 (9).

de Man, J.C., 1977. MPN Tables for more than one test. Eur. J. Appl. Microbiol.
Biotechnol. 4 (4), 307–316.

de Man, J.C., 1983. MPN tables, corrected. Eur. J. Appl. Microbiol. Biotechnol. 17 (5),
301–305.

Dufour, A.P., Cabelli, V.J., 1975. Membrane-filter procedure for enumerating compo-
nent genera of coliform group in seawater. Appl. Microbiol. 29 (6), 826–833.

Dufour, A.P., Strickland, E.R., Cabelli, V.J., 1981. Membrane-filter method for enumer-
ating Escherichia coli. Appl. Environ. Microbiol. 41 (5), 1152–1158.

El-Shaarawi, A.H., Esterby, S.R., Dutka, B.J., 1981. Bacterial density in water determined
by Poisson or negative binomial distributions. Appl. Environ. Microbiol. 41 (1),
107–116.

Gelman, A.J., Carlin, J.B., Stern, H.S., Rubin, D.B., 2004. Bayesian Data Analysis. Chapman
& Hall/CRC, Boca Raton, Florida.

George, R., 2008. The Big Necessity. Metropolitan, New York.
Gleick, P.H., 1998. Water in crisis: paths to sustainable water use. Ecol. Appl. 8 (3),

571–579.

Greenwood, M., Yule, G.U., 1917. On the statistical interpretation of some bacteriolog-
ical methods employed in water analysis. J. Hyg. 16 (1), 36–54.

Gronewold, A.D., Borsuk, M.E., 2009. A software tool for translating deterministic
model results into probabilistic assessments of water quality standard compli-
ance. Environ. Model Softw. 24 (10), 1257–1262.

Gronewold, A.D., Borsuk, M.E., 2010. Improving water quality assessments through
a hierarchical Bayesian analysis of variability. Environ. Sci. Technol. 44 (20),
7858–7864.

Gronewold, A.D., Borsuk, M.E., Wolpert, R.L., Reckhow, K.H., 2008. An assessment of
fecal indicator bacteria-based water quality standards. Environ. Sci. Technol. 42
(13), 4676–4682.

Gronewold, A.D., Myers, L., Swall, J.L., Noble, R.T., 2010. Addressing uncertainty in fecal
indicator bacteria dark inactivation rates. Water Res. 45 (2), 652–664.

Gronewold, A.D., Wolpert, R.L., 2008. Modeling the relationship between most
probable number (MPN) and colony-forming unit (CFU) estimates of fecal
coliform concentration. Water Res. 42 (13), 3327–3334.

Haas, C.N., 1989. Estimation of microbial densities from dilution count experiments.
Appl. Environ. Microbiol. 55 (8), 1934–1942.

Haas, C.N., Heller, B., 1988. Test of the validity of the Poisson assumption for analysis
of most-probable-number results. Appl. Environ. Microbiol. 54 (12), 2996–3002.

Hurley, M.A., Roscoe, M.E., 1983. Automated statistical analysis of microbial enumer-
ation by dilution series. J. Appl. Bacteriol. 55 (1), 159–164.

Klee, A.J., 1993. A computer program for the determination of most probable number
and its confidence limits. J. Microbiol. Methods 18 (2), 91–98.

Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D., 2000. WinBUGS-a Bayesian modelling
framework: concepts, structure, and extensibility. Stat. Comput. 10 (4), 325–337.

McBride, G.B., 2005. Using Statistical Methods for Water Quality Management. Issues,
Problems and Solutions. John Wiley & Sons Ltd, Chichester, UK.

McBride, G.B., Ellis, J.C., 2001. Confidence of compliance: a Bayesian approach for
percentile standards. Water Res. 35 (5), 1117–1124.

McBride, G.B., McWhirter, J.L., Dalgety, M.H., 2003. Uncertainty in most probable
number calculations for microbiological assays. J. AOAC Int. 86 (5), 1084–1088.

McCrady, M.H., 1915. The numerical interpretation of fermentation tube results. J.
Infect. Dis. 17 (1), 183–212.

Mekonnen, M.M., Hoekstra, A.Y., 2016. Four billion people facing severe water scarcity.
Sci. Adv. 2 (2). e1500323.

Messner, M.J., Wolpert, R.L., 2002. Cryptosporidium and Giardia occurrence in ICR
drinking water sources - statistical analysis of ICR data. In: McGuire, M.J. (Ed.),
Information Collection Rule Data Analysis. American Water Works Association
Research Foundation, Denver, CO, pp. 463–481.

Murcott, S., Keegan, M., Hanson, A., Jain, A., Knutson, J., Liu, S., Tanphanich, J.,
Wong, T.K., 2015. Evaluation of microbial water quality tests for humanitarian
emergency and development settings. Procedia Eng. 107, 237–246.

Novotny, V., 2003. Water Quality: Diffuse Pollution and Watershed Management. 2nd
ed., John Wiley & Sons, New Jersey.

Press, S.J., 2003. Subjective and Objective Bayesian Statistics: Principles, Models, and
Applications. Wiley-Interscience, Hoboken, NJ.

Core Team, R., 2014. R: a language and environment for statistical computing. Vienna,
Austria. http://www.r-project.org.

Stauber, C., Miller, C., Cantrell, B., Kroell, K., 2014. Evaluation of the compartment bag
test for the detection of Escherichia coli in water. J. Microbiol. Methods 99, 66–70.

Tillett, H.E., Coleman, R., 1985. Estimated numbers of bacteria in samples from non-ho-
mogeneous bodies of water - how should MPN and membrane filtration results
be reported? J. Appl. Bacteriol. 59 (4), 381–388.

Weiss, P., Aw, T.G., Urquhart, G.R., Galeano, M.R., Rose, J.B., 2016. Well water quality
in rural Nicaragua using a low-cost bacterial test and microbial source tracking. J.
Water Health 14 (2), 199–207.

Woodward, R.L., 1957. How probable is the most probable number? J. Am. Water
Works Assoc. 49 (1), 1060–1068.

Woomer, P.L., Bennett, J., Yost, R., 1990. Overcoming the inflexibility of most-proba-
ble-number procedures. Agron. J. 82 (2), 349–353.

World Health Organization, 2004. Guidelines for drinking-water quality: recommen-
dations. Tech. Rep., Geneva

Wu, J., Gronewold, A.D., Rodriguez, R.A., Stewart, J., Sobsey, M.D., 2014. Integrating
quantitative PCR and Bayesian statistics in quantifying human adenoviruses in
small volumes of source water. Sci. Total. Environ. 470, 255–262.

Please cite this article as: A. Gronewold et al., The compartment bag test (CBT) for enumerating fecal indicator bacteria: Basis for design
and interpretation of results, Science of the Total Environment (2017), http://dx.doi.org/10.1016/j.scitotenv.2017.02.055

doi:10.1016/j.scitotenv.2017.02.055
doi:10.1016/j.scitotenv.2017.02.055
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0005
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0010
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0015
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0020
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0025
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0030
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0035
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0040
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0045
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0050
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0055
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0060
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0065
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0070
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0075
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0080
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0085
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0090
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0095
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0100
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0105
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0110
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0115
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0120
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0125
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0130
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0135
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0140
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0145
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0150
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0155
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0160
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0165
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0170
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0175
http://www.r-project.org
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0185
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0190
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0195
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0200
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0205
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0210
http://refhub.elsevier.com/S0048-9697(17)30296-6/rf0215
http://dx.doi.org/10.1016/j.scitotenv.2017.02.055

	The compartment bag test (CBT) for enumerating fecal indicator bacteria: Basis for design and interpretation of results
	1. Introduction
	2. Experimental
	2.1. Statistical basis for interpreting CBT results
	2.2. Design criteria
	2.3. Sensitivity analysis

	3. Results and discussion
	Acknowledgments
	References


